Disputing an adversary’s control of the sea in a future conflict may see U.S. naval and coalition armed forces facing a contested, “fortified” theater of operations.
Land-based weapons and air platforms have longer range and deeper magazines than seaborne forces. These weapon ranges have expanded exponentially. Nevertheless, naval forces will have to maintain important sea-lines-of- communication under these and other threat conditions that come with such highly contested environments.
This requires more resilient and covert technologies to enable unhindered operations, a requirement which is compounded when applied to archipelagic geography in the close fight coupled with extended lines of communication to home ports and bases. The ability for re-supply, force generation, mobility, and sustainment will constantly be under threat and modern commanders will have to “campaign through the WEZ.”
Success in an archipelagic fight will hinge on the ability of disparate, expeditionary forces to maneuver as a coordinated joint and coalition force to protect critical lines of communication that set the conditions for larger joint forcible entry operations. The synchronized command and control (C2) of that initial joint force, to include logistics, is paramount to ensure broader favorable operational conditions for follow-on forces to control key terrain when and where needed.
It’s a lesson learned from the Dutch East Indies campaign of 1941-1942. The coordinated operations by the attacking Japanese force compared to the American-British-Dutch-Australian (ABDA) Command’s competing objectives and subsequent incoherence make a clear case that combat power can be misused quickly and disastrously when it isn’t unified. Policy and divergent objectives were not the only impediments to successful operations. There were diverse forces from diverse nations operating on diverse infrastructure that hindered operations. Even if the policy conflicts were removed, the ability for the commander to coherently command those forces would have been hampered by the differences in control systems.
The modern fight can and will have more opportunity for success
The western Pacific and the archipelagic seas are still the same and there is still powerful competition involved with maintaining open seas. However, there are many more opportunities for success in the modern environment. The U.S and allies’ technologic advantage is still significant. Their practiced doctrine is still superior. And acknowledging challenges is the best harbinger of overcoming them.
However, the early conditions of a future archipelagic conflict would favor potential adversaries. They would be organized for a such a conflict and would be capable of harming and disrupting extended lines of communication. They would have advanced weapon systems and platforms to challenge force projection at significant range. Finally, they would have the “home field” advantage at the theater and operational level.
Therefore, the ability of the U.S. and its allies to effectively maneuver, fight, and sustain available joint and combined forces at the tactical level will provide a key opportunity for advantage. The ability for a commander to sense, make sense, and act using all available force will be key to exploiting that advantage. Navy and Marine Corps forward operating forces, Army Special Operations and assault elements, and Air Force expeditionary and long-range strategic forces will need the capability to perform in a coherent and coordinated manner across all the Joint Warfighting Functions.
The ability to close extended kill-chains and kill-webs is imperative to imposing cost on an adversary. But of equal importance is the ability to mutually protect, sustain, inform, and maneuver through an integrated, resilient battle management system – this is the maturation of Joint All- Domain Command and Control (JADC2).
Our current systems among our services have been developed and matured for efficiencies within the individual service operating environment. This creates operational seams that impede unity at the higher tactical levels where joint agility is required. This also provides the adversary an opportunity to engage in “systems confrontation” to create fog and friction.
Solving this is a complex task, but there are recently prototyped and demonstrated technologies that can improve communications and battle management command and control capabilities and close these operational seams to enable greater interoperability among forces.
Connectivity drives agility in mobility, maneuver, and sustainment
Sustainment, maneuver, and mobility require communications to synchronize. Communication systems, as elements of a battle management network, enable the commander’s command and control of the ships, the bullets, the food, and personnel needed in theater.
From a logistics perspective, prepositioned and tactical resupply ships are vulnerable to exploitation. Losing a link in the communications chain could see logistics become untethered from assault elements in short order. LtCol Brian Donlon, U.S. Marine Corps, and his first-prize essay Logistics 2030: Foraging Is Not Going to Cut It captures well the logistical complexity that must be coordinated and communicated under Force Design 2030.
How many munitions and from what platforms? How long until they’re ready? How long can they be in the fight? Access to the total information required is a feat in and of itself but knowing the “right” information at the right time ahead of threats will be a daunting task.
As forces further diversify stocks afloat and ashore across individual L-class ships and amphibious ready groups, better communications integration, especially secure and low probability of detection/intercept capabilities, will be necessary to ensure rapid coordination with an already diverse force. Logistics forces need C2 on par with combat forces.
To achieve this, the logistics force must be provided redundancy in connectivity across multiple paths to increase the speed and survivability of joint force sustainment. Key to this is technology that seamlessly integrates communications and data links across platforms in multiple domains. It needs to provide multi-level security and intelligent, autonomous routing to accelerate message distribution to joint and coalition partners.
Integrating directional-line-of-sight communications technology would likewise increase survivability and maintain covert operations within an adversary’s weapon engagement zone by minimizing the targetable profile they present.
Together these two solutions not only improve sustainment, but also the intelligence and C2 functions by coordinating de-centralized intelligence, surveillance, and reconnaissance (ISR) information obtained across dozens of assets in theater. These are just two examples of the many technologies Collins Aerospace, an RTX business, has tested and demonstrated in the operationally relevant settings of large force exercises.
Testing new joint capability
Since 2021, Collins Aerospace has matured an advanced intelligent gateway solution through field experiments at Northern Edge 23 and Valiant Shield 22. The platform-flexible technology has consistently bridged greater levels of connectivity between multiple line-of-sight and beyond-line-of-sight networks and has proven itself in accelerating and completing complex kill-chains across multiple, diverse platforms. This technology has also been demonstrated on fixed-wing, rotary and ground mobile units in the Army’s EDGE and Project Convergence evolutions. The inclusion of an agile cross-domain solution ensured the smart and secure flow of information across multi-security levels.
In both phases of Northern Edge 23 experiments, the intelligent gateway distributed sensor data with rich geo-location intel for faster target tracking. Battle managers tested our Solipsys Battlespace Command and Control Center software that, together with the gateway, provided an alternative tactical operations control platform.
Additionally, Collins demonstrated low-cost direct-line-of-sight communications for disadvantaged users (DLOS-D) to provide the capability for covert operation in a contested environment. This technology adds resiliency and covertness required for survivability in fast-paced hostile scenarios.
These experiments demonstrated coordination with Five Eye allies and other coalition partners in simulated mission chains that tested for greater threat awareness from multiple ISR data sources and subsequent distribution of the data for faster targeting and decision cycles. This was accomplished using Intelligent Gateway technologies with certified and tested cross domain solutions. This allowed the required information to move between the relevant forces allowing the commander flexibility in force application. These same principles for information management are applicable across all Joint Warfighting Functions.
Collins is currently expanding the utility of these technologies into the marine environment, both afloat and ashore, working with the Navy and Marine Corps in RIMPAC-24 with the goal of providing coherent C2 capacity in an Emission Control (EMCON) restricted condition. The fundamental aim of every experiment is to present specific solutions ready to meet the joint capabilities and subsequent operational requirements outlined by the Department of Defense’s CJADC2 strategy.
The path to integration into the commander’s operational solutions
These technologies are platform-flexible, with high Technical Readiness Level (TRL). Collins Aerospace software solutions for edge processing and tactical command and control have open architectures for operators and the acquisition workforce to retool and optimize as needed.
Integrating a handful of intelligent gateways across both carrier strike groups and amphibious ready groups, USMC expeditionary forces, and the logistics force would achieve a resilient, redundant capability that enables significantly faster interoperability with joint and coalition forces to outpace, outmaneuver, and overmatch threats despite advantages an adversary possesses in theater.
These solutions open the capability aperture for warfighters and operators as new technologies like attritable drones with mesh networks drive an ever more diverse and agile fighting force.
Collins’ mature, software-defined radios can facilitate the integration of these new entrants. Directional radio configurations will increase the survivability. Integrating these, along with gateways, AI/ML edge processing, and tactical C2 software solutions become the makings of a comprehensive sense, make sense, and act capability framework any service can acquire, share, and refine iteratively to meet joint and combined force mission demands.
JOEL DAVIS
[email protected]
Served in multiple surface platforms, as a Joint Planner for multiple joint commanders, and as C-C4ISR Strategy & Policy resource officer in OPNAV prior to retiring as a captain from the U.S. Navy. He also taught at the U.S. Naval War College in Joint Military Operations. He currently leads CJADC2 integration efforts at Collins Aerospace, an RTX business supporting demonstrations for U.S. Navy & Marine Corps operational and joint requirements.
VICE ADMIRAL BRIAN BROWN
[email protected]
Retired Navy Information Warfare Officer whose assignments included commander, Naval Information Forces. As a subject matter expert on joint and maritime space operations, tactical networking, command and control, and battle space awareness, he serves as consultant to Collins Aerospace, an RTX business.